Drift Detection
The Drift Detection Test allows users to identify shifts between training and field/test datasets
Execute Test:
rules = DriftDetectionRules()
rules.add(type="anomaly_detection", dist_metric="Mahalanobis", _class="ALL", threshold=21.0)
edge_case_detection = data_drift_detection(test_session=test_session,
test_name="Drift-detection-test",
train_dataset_name="grasslands-final",
field_dataset_name="barrenlands-final",
train_embed_col_name="ImageEmbedding",
field_embed_col_name = "ImageEmbedding",
output_type = "semantic_segmentation", #not required for object detection usecases
level = "image",
rules = rules)
test_session.add(edge_case_detection)
test_session.run() Analysing Test Results
Interpreting the Results
Interactive Embedding View

Visualising and Assessing Data


Last updated
Was this helpful?

