LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page
  • Execute Test
  • Analysing Test Results

Was this helpful?

  1. RagaAI Prism
  2. Test Inventory
  3. Instance Segmentation

Failure Mode Analysis

Failure Mode Analysis is a test that allows users to deeply analyse their model's performance.

PreviousInstance SegmentationNextLabelling Quality Test

Last updated 1 year ago

Was this helpful?

Failure Mode Analysis enables you to define rules on metrics by setting thresholds. Based on rules, get a sorted list of all clusters that are breaching the threshold and clusters that are within the threshold. RagaAI will create clusters using the embeddings of the Dataset. Clusters that underperform and breaches the threshold will be highlighted on the Issue Stats screen.

Execute Test

The following code snippet is designed to perform a Failure Mode Analysis test on a specified dataset within the RagaAI environment.

First, you define the rules that will be used to evaluate the model's performance. These rules are based on metrics such as F1Score, Precision, Recall ().

rules = FMARules()
rules.add(metric='F1Score',  metric_threshold=0.5, label='ALL', conf_threshold=0.5, iou_threshold=0.5)
rules.add(metric='Recall',  metric_threshold=0.5,  label='ALL', conf_threshold=0.5, iou_threshold=0.5)
rules.add(metric='Precision',  metric_threshold=0.5, label='ALL', conf_threshold=0.5, iou_threshold=0.5)

dataset_name = "validation_dataset"

cls_default = clustering(test_session=test_session,
                         dataset_name=dataset_name,
                         method="k-means",
                         embedding_col="Embedding",
                         level="image",
                         args={"numOfClusters": 7}
                         )


edge_case_detection = failure_mode_analysis(test_session=test_session,
                                            dataset_name=dataset_name,
                                            test_name=run_name,
                                            model="RagaModel",
                                            gt="GT",
                                            rules=rules,
                                            type="fma",
                                            output_type="instance_segmentation",
                                            clustering=cls_default,
                                            embedding_col_name="Embedding")


test_session.add(edge_case_detection)
test_session.run()
  • FMARules(): Initialises the rules for the FMA test.

  • rules.add(): Adds a new rule with specific parameters:

    • metric: The performance metric to evaluate (e.g., F1Score, Precision).

    • metric_threshold: The minimum acceptable value for the metric.

    • label: Specifies the label(s) these metrics apply to. Use "ALL" to apply to all labels.

    • conf_threshold: Threshold for confidence score.

    • iou_threshold: Threshold for intersection over union (IOU) for geometry mapping.

Next, you define the clustering parameters to group similar failure modes.

  • clustering(): Sets the clustering method for grouping failure modes.

  • method: The clustering technique used, "k-means" in this case.

  • embedding_col: The column containing embedding vectors to be used for clustering.

  • level: The level at which clustering is applied, "image" here indicates that each image is treated as an individual data point.

  • args: Additional arguments for the clustering method, such as the number of clusters.

Use the failure_mode_analysis() function to execute the FMA test with the following parameters:

  • test_session: The session object managing tests.

  • dataset_name: Name of the dataset to be tested.

  • test_name: Name of the test run.

  • model: Name of the machine learning model to be evaluated.

  • gt: Ground truth data column name.

  • rules: Predefined rules for the FMA.

  • type: Type of test, which should be set to "fma".

  • output_type: Type of output expected from the model.

  • clustering: Clustering object obtained earlier.

  • embedding_col_name: Name of the column containing embeddings.

test_session.add(): Registers the failure mode analysis test with the test session.

test_session.run(): Starts the execution of all the tests added to the session, including the FMA.

Following this guide, you've successfully set up and initiated a Failure Mode Analysis test within RagaAI.

Analysing Test Results

Clustering (Embedding View)

  1. Navigate to Embedding View: Find the interactive visualisation interface in RagaAI.

  2. Visualise Clusters: Utilise the tool to visualise complex clustering, uncovering hidden patterns and structures in the data.

  3. Select Data Points: Use the lasso tool to select specific data points of interest and analyse their results.

Visualising Data

  1. Grid View: Access the grid view to see data points within the selected clusters.

  2. Data Filtering: Use this feature to focus on specific subsets of your dataset that meet certain conditions, helping to extract meaningful patterns and trends.

Understanding Clustering and Threshold Breaches

  • Cluster Analysis: RagaAI creates clusters using the embeddings of the dataset. These clusters group similar data points together.

  • Identifying Underperforming Clusters: Clusters that underperform (breaching the threshold) will be highlighted on the Issue Stats screen.

Navigating and Interpreting Results

  • Directly Look at Problematic Clusters: Users can quickly identify clusters responsible for underperformance and assess their impact on the overall model.

  • In-Depth Analysis: Dive deeper into specific clusters or data points to understand the root causes of underperformance.

Data Analysis

  1. Switch to Analysis Tab: To get a detailed performance report, go to the Analysis tab.

  2. View Performance Metrics: Examine metrics like label-wise performance and temporal graphs.

  3. Confusion Matrix: The class-based confusion matrix in Failure Mode Analysis provides a detailed breakdown of performance for each class. Users can view the confusion matrix in three ways:

    • Absolute: Shows the absolute number of pixels.

    • Normalised (Ground Truth): Normalises values with respect to the ground truth.

    • Normalised (Model): Normalises values with respect to model inference.

Practical Tips

  • Set Realistic Thresholds: Choose thresholds that reflect the expected performance of your model.

  • Leverage Visual Tools: Make full use of RagaAI’s visualisation capabilities to gain insights that might not be apparent from raw data alone.

By following these steps, users can efficiently leverage the Failure Mode Analysis test to gain a comprehensive understanding of their model's performance, identify key areas for improvement, and make data-driven decisions to enhance model accuracy and reliability.

Refer Metric Glossary