Outlier Detection
Identify unusual segmentation outputs. Detect anomalies before they harm performance.
Execute Test:
rules = DriftDetectionRules()
rules.add(type="anomaly_detection", dist_metric="Mahalanobis", _class="ALL", threshold=25)
edge_case_detection = data_drift_detection(test_session=test_session,
test_name="Outlier-detection-test",
dataset_name="outlier_detection",
embed_col_name="imageEmbedding",
output_type = "outier_detection",
rules = rules)
test_session.add()
test_session.run()
Analysing Test Results
Test Overview
Distance Score Analysis

Interactive Embedding View

Assessing and Visualising Data
Interpreting Results
Last updated
Was this helpful?


