LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain, etc.)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page
  • Prerequisites
  • Quick Setup Guide
  • Tracing Methods
  • Supported Trace Attributes
  • Accessing Trace Results

Was this helpful?

  1. RagaAI Catalyst
  2. Agentic Testing
  3. Concepts
  4. Tracing

RagaAI Catalyst Tracing Guide for Azure OpenAI Users

This guide helps Azure OpenAI users implement RagaAI Catalyst's tracing capabilities to monitor, debug, and analyze their agentic applications.

Prerequisites

  • Python 3.10 or higher

  • Azure OpenAI API access

  • RagaAI Catalyst access credentials

Quick Setup Guide

1. Install RagaAI Catalyst

pip install ragaai-catalyst

2. Set Up Tracing with Azure OpenAI

from ragaai_catalyst import RagaAICatalyst, Tracer, init_tracing
from llama_index.llms.azure_openai import AzureOpenAI

# Initialize RagaAI Catalyst
catalyst = RagaAICatalyst(
    access_key="your_access_key",
    secret_key="your_secret_key",
)

# Create a tracer
tracer = Tracer(
    project_name="YourProjectName",  # Create this project in the RagaAI UI first
    dataset_name="YourDatasetName",
    tracer_type="agentic_tracing",  # Use appropriate tracer type ("agentic/llamaindex" for llamaindex examples)
)

# Initialize tracing
init_tracing(catalyst=catalyst, tracer=tracer)

# Create your Azure OpenAI instance
azure_llm = AzureOpenAI(
    azure_endpoint="https://your-resource-name.openai.azure.com/",
    model="your-deployment-name",  # e.g., "gpt-4o-mini"
    api_key="your-azure-openai-api-key",
    api_version="2024-05-01-preview",  # Use appropriate API version
    engine="your-deployment-name"  # Same as your deployment name
)

# Optional: Set model cost information for billing analysis
tracer.set_model_cost({
    "model_name": "gpt-4o-mini",
    "input_cost_per_million_token": 10_000_000,
    "output_cost_per_million_token": 20_000_000
})

Tracing Methods

Using Decorators: Use decorators to trace specific functions in your application.

from ragaai_catalyst import trace_llm, trace_tool, trace_agent

# Trace LLM calls
@trace_llm(name="azure_completion")
async def get_completion(prompt):
    response = await azure_llm.achat([ChatMessage(role="user", content=prompt)])
    return response.message.content

# Trace tool usage
@trace_tool(name="calculator_tool")
def calculate(x, y, operation):
    if operation == "add":
        return x + y
    elif operation == "multiply":
        return x * y
    # Add more operations as needed

# Trace agent behavior
@trace_agent(name="financial_advisor")
def advisor_agent(query, gt=None):  # Note: gt parameter for ground truth
    # Agent implementation
    return response

Supported Trace Attributes

RagaAI Catalyst captures various attributes in your traces:

  • User Input

  • Agent Output

  • Network Calls

  • File Read/Write Operations

  • Tool Calls

  • LLM Calls (including Azure OpenAI)

  • Custom Calls

Accessing Trace Results

View your traces in the RagaAI Catalyst UI:

  1. Log in to your RagaAI account

  2. Navigate to your project

  3. Select the dataset you specified in your code

  4. View detailed traces showing each span (operation) within your application

PreviousLanggraph (Agentic Tracing)NextDynamic Tracing

Last updated 2 months ago

Was this helpful?