Drift Detection
Detect drift in object detection models. Track shifts in data and retrain before accuracy drops.
Execute Test:
rules = DriftDetectionRules()
rules.add(type="drift_detection", dist_metric="Mahalanobis", _class="ALL", threshold=2)
edge_case_detection = data_drift_detection(test_session=test_session,
test_name=f"Drift-Detection-Test",
train_dataset_name="bdd_train_dataset",
field_dataset_name="bdd_field_dataset",
train_embed_col_name="ImageVectorsM1",
field_embed_col_name = "ImageVectorsM1",
level = "image",
rules = rules)
test_session.add(edge_case_detection)
test_session.run()
Analysing Test Results
Interpreting the Results
Interactive Embedding View

Visualising and Assessing Data


Last updated
Was this helpful?


