LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page
  • Execute Test:
  • Analysing Test Results

Was this helpful?

  1. RagaAI Prism
  2. Test Inventory
  3. Semantic Segmentation

Drift Detection

The Drift Detection Test allows users to identify shifts between training and field/test datasets

The Drift Detection Test enables you to detect drift between your training dataset and the field/test dataset. By setting a threshold on the distance metric, you can pinpoint out-of-distribution data points

Execute Test:

The code snippet provided is structured to set up and perform a Drift Detection Test, comparing a baseline dataset against a more recent dataset to identify any drift in the data.

Configure the drift detection test using the rules defined above.

rules = DriftDetectionRules()
rules.add(type="anomaly_detection", dist_metric="Mahalanobis", _class="ALL", threshold=21.0)

edge_case_detection = data_drift_detection(test_session=test_session,
                                           test_name="Drift-detection-test",
                                           train_dataset_name="grasslands-final",
                                           field_dataset_name="barrenlands-final",
                                           train_embed_col_name="ImageEmbedding",
                                           field_embed_col_name = "ImageEmbedding",
                                           output_type = "semantic_segmentation", #not required for object detection usecases
                                           level = "image",
                                           rules = rules)
                                           
test_session.add(edge_case_detection)

test_session.run()                                        

Rules

The first step is to establish the criteria for detecting drift in your datasets.

  • DriftDetectionRules(): Initialises the rules for drift detection.

  • rules.add(): Adds a new rule for detecting data drift:

    • type: The type of drift detection, "anomaly_detection" in this case.

    • dist_metric: The distance metric to use for detection, "Mahalanobis" which measures the distance between a point and a distribution.

    • _class: Specifies the class(es) these metrics apply to. "ALL" means all classes in the dataset.

    • threshold: The value above which the distance metric indicates drift.

Initialise Drift Detection Test

data_drift_detection(): Prepares the drift detection test with the following parameters:

  • test_session: The session object linked to your project.

  • test_name: A descriptive name for this test.

  • train_dataset_name: The name of the baseline or training dataset.

  • field_dataset_name: The name of the new or field dataset to compare against the baseline.

  • train_embed_col_name: The column (schema mapping) in the training dataset that contains embeddings.

  • field_embed_col_name: The column (schema mapping) in the field dataset that contains embeddings.

  • output_type: The type of output, "semantic_segmentation" in this instance. Note: Not required for object detection usecases.

  • level: The level at which to detect drift, "image" means image-level detection.

  • rules: The previously defined rules for the test.

test_session.add(): Registers the drift detection test within the session.

test_session.run(): Initiates the execution of all configured tests in the session, including your drift detection test.

By completing these steps, you've initiated a Drift Detection Test in RagaAI to analyse your datasets for any significant changes in data distribution.

Analysing Test Results

Interpreting the Results

  • In Distribution Data Points: Identified as "in distribution" if they fall within the set threshold, signifying alignment with the training data.

  • Out of Distribution Data Points: Labelled as "out of distribution" if they exceed the threshold, suggesting potential drift requiring close examination.

Interactive Embedding View

  • Visualisation: Use the interactive embedding view to visualise and comprehend the drift between datasets.

  • Data Selection: Apply the lasso tool within the embedding view to select and scrutinise data points of interest.

Visualising and Assessing Data

  • Data grid View: Helps visualise annotations with images sorted by mistake scores.

  • Image View: Delve into detailed analyses of mistake scores for each label, with interactive annotation rendering and original image viewing.

Image View

  • Information Card: Provides Distance Score of the selected image.

By adhering to these guidelines, you can effectively utilise Drift Detection in RagaAI to maintain the integrity and relevance of your models over time.

PreviousActive LearningNextClass Imbalance

Last updated 1 year ago

Was this helpful?