Spatio-Temporal Failure Mode Analysis
The Spatio-Temporal Failure Mode Analysis Test is designed to analyze the model's performance on the spatio-temporal dataset.
Execute Test:
test_session = TestSession(
project_name="Cropin",
run_name=run_name,
access_key=ACCESS_KEY,
secret_key=SECRET_KEY,
host=HOST
)
rules = FMARules()
rules.add(metric='F1Score',metric_threshold=0.2,conf_threshold=0.4,iou_threshold=0.8,background_label= "background",include_background=True,type="label",clazz=["ALL"])
rules.add(metric="PixelAccuracy",metric_threshold=0.7,conf_threshold=0.5,iou_threshold=0.5, clazz=["ALL"], type="label", background_label="Unlabelled", include_background=True)
rules.add(metric = "Precision", metric_threshold = 0.3,conf_threshold=0.5,iou_threshold=0.5, clazz=["ALL"], type="label", background_label="background", include_background=True)
rules.add(metric="wIoU", metric_threshold=0.1,conf_threshold=0.5,iou_threshold=0.5, weights={"road": 100, "unlabelled": 1}, type="label", clazz=["ALL"])
rules.add(metric="Recall", metric_threshold=0.2,conf_threshold=0.5,iou_threshold=0.5, clazz=["ALL"], type="label", background_label="Unlabelled", include_background=True)
cls_default = clustering(test_session=test_session,
dataset_name=dataset_name,
method="k-means",
embedding_col="ImageEmbedding",
level="image",
args={"numOfClusters": 5}
)
edge_case_detection = failure_mode_analysis_geospatial(test_session=test_session,
dataset_name=dataset_name,
test_name="fma_semantic_geospatial_1",
modelColumnName="ModelInferences",
gtColumnName="LabelPath",
rules=rules,
outputType="semantic_segmentation",
embeddingColumnName="ImageEmbedding",
clustering=cls_default,
labelMapping={
},
type="fma",
primary_metadata= "place")
test_session.add(edge_case_detection)
test_session.run()Analyzing Test Results:

Understanding Clustering:

Data Analysis:


Last updated
Was this helpful?

