LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page
  • Execute Test
  • Analysing Test Results

Was this helpful?

  1. RagaAI Prism
  2. Test Inventory
  3. Object Detection

Model Comparison Test

The Model Comparison Test results provide insights into the performance of multiple machine learning models across various evaluation metrics.

Model Comparison Test enables users to compare the effectiveness and robustness of different models, facilitating informed decision-making in model selection and optimization..

Execute Test

The following code snippet is designed to perform a Model Comparison Test on a specified dataset within the RagaAI environment.

rules = ModelABTestRules() 
rules.add(metric="precision_diff_all", IoU=0.6, _class="ALL", threshold=0.7,conf_threshold=0.5)

model_comparison_check = model_ab_test(test_session=test_session, 
                                       dataset_name="dataset",
                                       test_name="AB_Test",
                                       modelA = "ModelA", 
                                       modelB = "ModelB" ,
                                       type = "labelled", 
                                       gt="GT",
                                       rules = rules,
                                       aggregation_level=["Weather"])

test_session.add(model_comparison_check)
test_session.run()

  1. Configure Test Parameters:

    • Initialise the Model Comparison Test with the model_ab_test() function.

    • Add specific rules for comparison using the rules.add() function with the following parameters:

      • metric: Specify the metric to be used for comparison, such as "precision_diff_all".

      • IoU: Set the IoU (Intersection over Union) threshold, if applicable.

      • _class: Specify the class or label to which the rule applies, using "ALL" for all classes.

      • threshold: Define the threshold for the metric, indicating the level of difference required to flag a significant change.

      • conf_threshold: Set the confidence threshold for model predictions, if applicable.

    • Provide the following parameters:

      • test_session: Define the test session containing project details and authentication credentials.

      • dataset_name: Specify the name of the dataset to be used for comparison.

      • test_name: Name the test run to identify it later.

      • modelA: Specify the first model to be compared (e.g., "ModelA").

      • modelB: Specify the second model to be compared (e.g., "ModelB").

      • type: Specify the type of test, such as "labelled".

      • gt: Provide the ground truth data against which model inferences will be compared.

      • rules: Define the rules or metrics to be used for comparison.

      • aggregation_level: Specify the level of aggregation for comparison, if applicable (e.g., "Weather").

  2. Add Test to Session:

    • Use the test_session.add() function to register the Model Comparison Test with the test session.

  3. Run Test:

    • Use the test_session.run() function to start the execution of all tests added to the session, including the Model Comparison Test.

By following these steps, you can effectively compare the performance of different machine learning models using the Model Comparison Test.

Analysing Test Results

Metadata Configuration

  1. Navigate to the config table: Find the combinations of different metadata forming scenarios

  2. Identifying Underperforming Scenarios: Identify the scenario where the difference between both the is the high based on difference in performance metric

Visualising Data

  1. Grid View: Access the grid view to see data points within the selected clusters.

  2. Data Filtering: Use this feature to focus on specific subsets of your dataset that meet certain conditions, helping to extract meaningful patterns and trends.

Navigating and Interpreting Results

  • Directly Look at Problematic Clusters: Users can quickly identify clusters responsible for underperformance and assess their impact on the overall model.

  • In-Depth Analysis: Dive deeper into specific clusters or data points to understand the root causes of underperformance.

Data Analysis

  1. Switch to Analysis Tab: To get a detailed performance report, go to the Analysis tab.

  2. View Performance Metrics: Examine metrics and detections on a temporal chart

  3. Confusion Matrix: The class-based confusion matrix in Failure Mode Analysis provides a detailed breakdown of performance for each class.

Practical Tips

  • Set Realistic Thresholds: Choose thresholds that reflect the expected performance of your model.

  • Leverage Visual Tools: Make full use of RagaAI’s visualisation capabilities to gain insights that might not be apparent from raw data alone.

By following these steps, users can efficiently leverage the Failure Mode Analysis test to gain a comprehensive understanding of their model's performance, identify key areas for improvement, and make data-driven decisions to enhance model accuracy and reliability.

PreviousFailure Mode AnalysisNextDrift Detection

Last updated 1 year ago

Was this helpful?

Page cover image