Cluster Imbalance Test
Detect imbalance across data clusters. Ensure segmentation models train on fair, balanced distributions.
Execute Test:
rules = SBRules()
rules.add(metric="js_divergence", ideal_distribution="uniform", metric_threshold=0.1)
rules.add(metric="chi_squared_test", ideal_distribution="uniform", metric_threshold=0.1)
cls_default = clustering(test_session=test_session,
dataset_name=dataset_name,
method="k-means",
embedding_col="ImageEmbedding",
level="image",
args={"numOfClusters": 8}
)
edge_case_detection = cluster_imbalance(test_session=test_session,
dataset_name=dataset_name,
test_name="Cluster_Imbalance",
type="cluster_imbalance",
output_type="cluster",
embedding="ImageEmbedding",
rules=rules,
clustering=cls_default
)
test_session.add(edge_case_detection)
test_session.run()
Analysing Test Results:

Understanding Clustering:
Interpreting Results:
Last updated
Was this helpful?

