LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page
  • Execute Test:
  • Analysing Test Results:

Was this helpful?

  1. RagaAI Prism
  2. Test Inventory
  3. Semantic Segmentation

Cluster Imbalance Test

The Cluster Imbalance Test in RagaAI is designed to assess the distribution of data points within clusters to identify imbalances and address bias.

Execute Test:

rules = SBRules()
rules.add(metric="js_divergence", ideal_distribution="uniform", metric_threshold=0.1)
rules.add(metric="chi_squared_test", ideal_distribution="uniform", metric_threshold=0.1)

cls_default = clustering(test_session=test_session,
                         dataset_name=dataset_name,
                         method="k-means",
                         embedding_col="ImageEmbedding",
                         level="image",
                         args={"numOfClusters": 8}
                         )

edge_case_detection = cluster_imbalance(test_session=test_session,
                                        dataset_name=dataset_name,
                                        test_name="Cluster_Imbalance",
                                        type="cluster_imbalance",
                                        output_type="cluster",
                                        embedding="ImageEmbedding",
                                        rules=rules,
                                        clustering=cls_default
                                        )
test_session.add(edge_case_detection)
test_session.run()

Initialize Cluster Imbalance Rules:

  • Use the SBRules() function to initialize the rules for the test.

  • Add Rules:

    • Use the rules.add() function to add specific rules with the following parameters:

      • metric: The metric used to evaluate distribution across clusters (e.g., js_divergence, chi_squared_test).

      • ideal_distribution: The assumed ideal distribution for the metric (e.g., "uniform").

      • metric_threshold: The threshold at which the cluster distribution is considered imbalanced.

      Configure Clustering:

      • Perform clustering on the dataset to group similar data points together using the desired method and parameters.

      • Use the clustering() function with parameters such as method, embedding_col, level, and args.

      Execute Test:

      • Use the cluster_imbalance() function to execute the test with the following parameters:

        • test_session: The session object managing tests.

        • dataset_name: Name of the dataset to be tested.

        • test_name: Name of the test run.

        • type: Type of test, which should be set to "cluster_imbalance".

        • output_type: Type of output expected from the model.

        • embedding: Name of the column containing embedding vectors.

        • rules: Predefined rules for the test.

      Add Test to Session:

      • Use the test_session.add() function to register the test within the session.

      Run Test:

      • Use the test_session.run() function to execute all tests added to the session, including the Cluster Imbalance Test.

    By following these steps, you have successfully set up and executed a Cluster Imbalance Test on the RagaAI Testing Platform.

Post-execution, review the results to identify and remove or handle duplicates as necessary.

Analysing Test Results:

The Cluster Imbalance Test offers valuable insights into how evenly data points are distributed across clusters within the dataset. The results help identify any significant imbalances that could potentially bias the model’s outcomes. The results are presented in three segments:

Understanding Clustering:

  • Cluster Analysis: RagaAI utilizes clustering to group similar data points together, leveraging embeddings from the dataset.

  • Identifying Imbalanced Distribution: Clusters with high imbalance scores indicate that data points are unevenly distributed leading to biased results.

Interpreting Results:

  • Embedding View: Use this interactive feature to visualize how data points are distributed among clusters.

  • Data Grid View: Helps visualise annotations with images sorted by cluster imbalance scores.

  • Image View: Explore in-depth analyses for each image.

By utilizing these detailed and structured steps, the Cluster Imbalance Test is a robust tool for ensuring that the distribution of clusters is balanced, thereby enhancing the integrity and fairness of machine learning models.

PreviousNear Duplicates DetectionNextImage Property Drift Detection

Last updated 1 year ago

Was this helpful?