LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page
  • Fine Tuning Enabler
  • 1. Accessing the Fine-Tuning Tab
  • 2. Creating a New Job
  • 3. Selecting a Dataset
  • 4. Configuring Hyperparameters
  • 5. Template and Preview
  • 6. Executing the Fine-Tuning Job
  • 7. Monitoring Job Status

Was this helpful?

  1. RagaAI Catalyst

Fine Tuning (OpenAI)

Fine-Tuning Enabler on RagaAI Catalyst

PreviousEvaluation Maintenance GuideNextIntegration

Last updated 3 months ago

Was this helpful?

This guide shows how to fine-tune a model within RagaAI Catalyst using its built-in Fine Tuning Enabler. The Fine Tuning Enabler orchestrates the necessary dataset formatting, job creation, and interaction with third-party platforms (such as OpenAI) under the hood, so you can focus on defining your job configurations and data mappings. Refer to the annotated screenshots below for a visual walkthrough.

Fine Tuning Enabler

The Fine Tuning Enabler is RagaAI Catalyst’s behind-the-scenes orchestrator for:

  • Dataset Conversion: Automatically transforms your dataset into the structure required by the selected platform.

  • Job Creation: Safely uploads files and initiates fine-tuning jobs with your chosen hyperparameters.

  • Progress Tracking: Polls job status from the provider and updates Catalyst in near real-time.

  • Result Registration: Stores the final fine-tuned model reference so you can easily query or test it in the Playground.

You do not need to perform any extra steps to use the Fine Tuning Enabler; simply provide the correct configurations in the UI, and it handles the rest.


1. Accessing the Fine-Tuning Tab

  1. In the Catalyst sidebar, click Finetuning.

  2. If you have not created any jobs yet, you will see “No Job found.”


2. Creating a New Job

  1. Click + New Job (see bottom-right corner in the “No Job found” page).

  2. A dialog box titled “Create New Job” appears.

  3. Provide a Job Name (such as New_job) and click Create.

Note After you click Create, you will be taken to the Job Detail page where you can configure your fine-tuning parameters.


3. Selecting a Dataset

Once you’re on the Job Detail page:

  1. Use the Select Dataset dropdown at the top-left of the main area to choose from your project’s available datasets (e.g., new_test_data, pii_test_v).

  2. If your project has many datasets, use the search bar within the dropdown to quickly locate the one you need.

Important The chosen dataset’s schema and rows will be used to create prompts, contexts, and responses during fine-tuning. Make sure your dataset is structured appropriately (e.g., columns that can map to prompt, instructions, or answer text).


4. Configuring Hyperparameters

On the right-hand side of the Job Detail page:

  1. Under Platform, choose your provider (e.g., OpenAI).

  2. Set your training config values:

    • Epoch: Number of training epochs.

    • Learning Rate: Learning rate for gradient updates.

    • Batch Size: Size of mini-batches during training.


5. Template and Preview

The middle panel displays a Template section, illustrating how your dataset columns will map to:

  • System (overall instructions)

  • User (prompt)

  • Assistant (desired response)

You can also see a short Result summary at the bottom:

  • JobID (placeholder if not yet created)

  • Model (to be determined once you run the job)

  • Status (e.g., Draft, Running, or Succeeded)


6. Executing the Fine-Tuning Job

  1. Review your chosen dataset, hyperparameters, and the template.

  2. Click Execute Job (in the bottom-right corner of the middle panel).

  3. If needed, Save Changes (top-right corner) to preserve your configuration before or after execution.

Once executed, the Fine Tuning Enabler will:

  • Convert your dataset into the appropriate JSONL or other required format.

  • Upload it securely to the selected platform (e.g., OpenAI).

  • Create the corresponding Fine-Tuning job on that platform.

  • Poll for job status, updating it in RagaAI Catalyst.


7. Monitoring Job Status

  1. Navigate back to Finetuning from Job Status Page

  2. Each job card displays whether it is Running, Succeeded, or Failed.

  3. Click on a job card to view detailed logs, error messages (if any), and final results (fine-tuned model ID).

Tip Once your job succeeds, you can reference the newly fine-tuned model in Playground or other parts of RagaAI Catalyst.