LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page

Was this helpful?

  1. RagaAI Prism
  2. Sandbox Guide

Super Resolution

This page provides examples of how RagaAI's Testing Platform can add value to teams building Super Resolution models. It is a companion piece to the Product Demo available on the RagaAI Platform.

PreviousTabular DataNextOCR

Last updated 1 year ago

Was this helpful?

The Super Resolution Project on the sample workspace is an example of how the RagaAI Testing Platform can help with the following tasks -

  • Data Quality Checks before training a new model

  • Model Quality Checks to identify performance gaps and perform regression analysis

  • End-to-end pipeline level tests beyond AI models

The RagaAI Testing Platform is designed to add science to the art of detection AI issues, performing root cause analysis and providing actionable recommendations. This is done as an automated suite of tests on the platform.

An overview of all tests for the sample project is available here -

1. Active Learning Test

Goal - Identify datapoints in the dataset that will add maximum value to the model training / re-training process.

Methodology - RagaAI quantifies the information value of each datapoint in the dataset and helps optimise data diversity while removing similar data points

Insight - For this case, we see that the platform helps select 103 datapoints to annotate out of a dataset of 800 while capturing dataset diversity and avoiding similar datapoints.

Impact - This technique helps users often reduce data annotation and training costs by 8x as about ~95% of the datasets value can often be realised by training on 8x fewer samples

  1. Semantic Similarity Test:

Goal - Assess the fidelity of super-resolution reconstructions by measuring semantic similarity between high-resolution and low- resolution image.

Methodology - Compares semantic representations of high-resolution and low-resolution images using a similarity metric, flagging those with scores below a threshold as containing potentially impactful artefacts.

Insight - The test provides insights into the model's ability to preserve semantic content during upscaling. Images with low similarity scores are likely candidates for further investigation, potentially revealing problematic artefacts or distortions introduced by the model. RagaAI highlights successful and unsuccessful cases, offering a clear picture of the model's strengths and weaknesses in terms of semantic preservation.

Impact - This technique helps improve model performance and reliability by addressing issues that could affect user trust and application effectiveness.

  1. Outlier Detection Test:

Goal - The primary goal of the test is to detect and flag images in your dataset that deviate significantly from the expected distribution. These outliers can negatively impact model performance, leading to inaccurate predictions or reduced generalisability.

Methodology - The RagaAI platform extracts image features, calculates distance metrics [eg. Mahalanobis] to the data centre and flags outliers.

Insight - In this case, we can see that the presence of potentially anomalous data points that may negatively impact model performance if not addressed. The Distance Metric value provides a quantitative measure of the anomaly's deviation from the expected distribution.

Impact - By identifying and analysing outliers, developers can improve model robustness by addressing potential biases or blind spots in the training data. We can also filter out anomalous data points during training, leading to more accurate and generalisable models.

  1. Near Duplicates Test:

Goal - Identify and remove near-duplicate images from your super-resolution training dataset to improve data efficiency and model performance.

Methodology - The platform automatically identifies pairs of near-duplicate images based on their hash similarity.

Insight - Removing near duplicates helps mitigate overfitting, where the model memorises redundant data instead of learning generalisable features. This can lead to improved performance on unseen data.

Impact - Using the Near Duplicates Test reduces training time and resource consumption by eliminating redundant data.It improves model generalisation and robustness by preventing overfitting on near-duplicate examples.

For more details, please refer to the detailed .

For more details, please refer to the detailed

For more details, please refer to the detailed

For more details, please refer to the detailed

active learning documentation
Semantic Similarity Test.
Outlier Detection Test.
Near Duplicates Detection Test.
Page cover image
Selecting relevant datapoints on the RagaAI Testing Platform
Identify inconsistent datapoints for the Super Resolution task
Identify anomalies in the training dataset
Identify issues with data independence across the training + test dataset
Try the RagaAI Platform!