LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page
  • Provision Base Infrastructure
  • Pre-Requirements
  • Azure Login using CLI
  • Execute the following command to Provision the Environment:
  • Install Raga Catalyst
  • Access Raga Catalyst

Was this helpful?

  1. RagaAI Catalyst
  2. On-Premise Deployment

Enterprise Deployment Guide for Azure

Azure Enterprise Deployment Guide for RagaAI Catalyst

PreviousEnterprise Deployment Guide for AWSNextEvaluation Deployment Guide

Last updated 1 month ago

Was this helpful?

Deploying RagaAI Catalyst on your Azure infrastructure ensures that your data remains secure and within your control. Follow these steps to set up RagaAI Catalyst in your Azure account.

Provision Base Infrastructure

To get started quickly, you can use the Terraform Templates and scripts provided by the Raga team:

Pre-Requirements

  • Set Up Azure User: The user running the installation should have Contributor and User Access Administrator roles. Alternatively, create a dedicated with specific permissions.

  • Resource Provider Quotas: Ensure that you have sufficient quota for the Standard_D8a_v4 and Standard_D8pls_v5 VMs, each with minimum 16 available vCPUs, in your target region for AKS Node Pools.

  • Ensure that your system supports Bash commands

  • The following CLI tools should be installed:

Azure Login using CLI

Option A: Using az login
az login

This will open a browser window for authentication.

Option B: Using Service Principal
export AZURE_CLIENT_ID=your-client-id
export AZURE_CLIENT_SECRET=your-client-secret
export AZURE_TENANT_ID=your-tenant-id
export AZURE_SUBSCRIPTION_ID=your-subscription-id

Validate Azure CLI Login:

az account show

Execute the following command to Provision the Environment:

Extract the TAR file provided by the RagaAI team:

tar -zxvf raga-catalyst-terraform-azure-<version>.tar

azure-infra.sh is the cloud provisioning script. This uses python, azure cli and terraform to provision the base infra.

bash azure-infra.sh --location=<location> --customer-name=<customer-name>

Replace placeholders:

  • <location>: Azure region (e.g., eastus)

  • <customer-name>: This will be prifix for all azure resources

  • <docker-hub-pat>: Provided by RagaAI team

List of Azure Resources Provisioned by RagaAI Terraform Infrastructure

Note: You can also set up your cloud environment using the following requirements as an Alternative to the RagaAI Terraform templates

Storage Account

Create Storage Account with Blob Container and configure CORS with the following settings:

  • Allowed Methods: GET, PUT

  • Allowed Origins: * (all origins)

  • Allowed Headers: * (all headers)

  • Exposed Headers: none

  • Max Age: 3000 seconds

AKS Cluster
  • Kubernetes v1.24+ (Recommend containerd runtime)

  • Ensure sufficient quota for compute resources

  • Node Pool Configuration

    Node Pool

    VM Type

    vCPU & Memory

    Min Size

    OS Disk

    Architecture

    Taints

    Labels

    AMD Node Group

    Standard_D8a_v4

    8vCPU & 32GB

    2 nodes

    64 GB

    x86_64

    N/A

    N/A

    ARM Node Group

    Standard_D8pls_v5

    8vCPU & 16GB

    2 nodes

    64 GB

    ARM64

    architecture=arm:NoSchedule

    architecture=arm, nodetype=arm-node

  • Cluster Add-ons

    • Azure Disk CSI Driver

  • Cluster Autoscaler

    • Enable cluster autoscaler for node pools

Azure Database for MySQL
  • SKU: General Purpose

  • Compute: 2 vCore

  • Memory: 8 GiB RAM

  • Storage: 50 GB

  • Version: MySQL 8.0

Virtual Machine
  • Create a VM in a public subnet to act as a bastion/jump box

    • Size: Standard_B1s (1 vCPU and 1 GB Memory)

    • OS Disk: 8 GB

  • Network Security Group for bastion host

    • Inbound Rules:

      • Allow SSH (port 22)

    • Outbound Rules:

      • Allow all outbound within VNet

  • Network Security Group for internal load balancer

    • Inbound Rules:

      • Allow HTTP (port 80) from VNet

      • Allow HTTPS (port 443) from VNet

    • Outbound Rules:

      • Allow all outbound within VNet

Virtual Network
  • Virtual Network with address space

  • 2 Public and 2 private subnets

  • Route table for private subnets

  • NAT Gateway for private subnet outbound

Install Raga Catalyst

Install Raga Catalyst:

  • SSH into the bastion VM and run the installation command

Download and Extract the TAR file provided by the RagaAI team:

curl -o $HOME/raga-catalyst-azure-deploy-<version>.tar "<URL>"
tar -zxvf $HOME/raga-catalyst-azure-deploy-<version>.tar

raga-catalyst-azure-deploy.sh is the Catayst deployment script.

Note: Update the .env file with credentials.

bash raga-catalyst-azure-deploy.sh --location=<location> --customer-name=<customer-name> --release-tag=<release-tag>
  • <location>: Azure region

  • <customer-name>: This will be prifix for all azure resources

  • <release-tag>: Get the release version from Raga team

Access Raga Catalyst

Access Catalyst UI with the private load balancer IP/DNS

  • Portal: http://<Load_Balancer_IP>

  • API: http://<Load_Balancer_IP>/api


For any issues during the deployment process or additional assistance, please contact our support team at .

contact@raga.ai
custom role
terraform
azure cli
python
Provision Base Infrastructure
Installation Execution
Verify Installation
Configure azure cli