LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page
  • Authentication
  • Project Management
  • Trace Management
  • Dataset Management
  • Experiment Management

Was this helpful?

  1. AgentNeo

Getting Started

Authentication

Creates an authenticated session with AgentNeo

from agentneo import AgentNeo

# To authenticate an existing user
agent_session = AgentNeo(
    access_key=ACCESS_KEY,
    secret_key=SECRET_KEY,
    base_url=BASE_URL
)

# To authenticate a new user to get generate access_key and secret_key
agent_session = AgentNeo(
    email="user1@example.com", #your email id
    base_url=BASE_URL
)

# For a registered used, to retrieve the access_key and secret_key
agent_session = AgentNeo(
    email="user1@example.com", # already registered email id
    base_url=BASE_URL
)

Project Management

Allows creating projects

from agentneo import Project

# To create a new project
project = Project(session=agent_session, 
                  project_name="project_name", 
                  description="Project Description").create()
                  
project_id = project['id']

Trace Management

Enables tracing of agents, methods, and LangGraph graphs

from agentneo import Trace

# Create a tracer object
tracer = Tracer(session=agent_session, metadata={
                tools= [
                    {"name": "name1", "description": "tool_description1"},
                    {"name": "name2", "description": "tool_description2"},
                    ...
                ])

# Decorator to trace agents & methods
@tracer.trace_node

# Decorator to trace Langgraph graphs
@tracer.trace_graph

# To add callbacks to LLMs
openai_llm = ChatOpenAI(other_parameters, 
                        ... , 
                        callbacks=[tracer.get_callback_handler()])
                        
# To upload the recorded traces
trace_id = tracer.upload_trace()

Dataset Management

Allows creation and management of datasets

from agentneo import Dataset

# To define a new dataset
dataset = Dataset(
    session=agent_session,
    project_id=project_id, 
    dataset_name="test_dataset1", 
    description="A test dataset"
)

# Create dataset from recorded trace
dataset_traced = dataset.from_trace(trace_id=tracer.id, trace_filter=None)

Experiment Management

Allows creation, execution, and analysis of experiments

from agentneo import Experiment

# Create a new experiment 
experiment_object = Experiment(
        session=agent_session,
        experiment_name="ExperimentName",
        description="Sample Description",
        dataset_id=dataset_traced['id'],
        project_id=project_id
    )

experiment_created = experiment_object.create()

# To run a metric
exp = experiment.execute(metrics=[
    {
            "name": "tool_selection_accuracy", 
            "config": {
                    "model": "gpt-4o-mini", 
                    "OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY")
            }
    }
])

# To run multiple metrics together
exp = experiment.execute(metrics=[
    {
            "name": "summarise", 
            "config": {}
    },
    {
            "name": "tool_selection_accuracy", 
            "config": {
                    "model": "gpt-4o-mini", 
                    "OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY")
            }
    },
    {
            "name": "tool_usage_efficiency", 
            "config": {
                    "model": "gpt-4o-mini", 
                    "OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY")
            }
    },
    {
            "name": "goal_decomposition_efficiency", 
            "config": {
                    "model": "gpt-4o-mini", 
                    "OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY")
            }
    },
    {
            "name": "plan_adaptibility", 
            "config": {
                    "model": "gpt-4o-mini", 
                    "OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY")
            }
    }
])

# To get the results of the experiments run
exp = experiment.get_results(experiment_id=exp.id)

for i in exp['results']:
    print(f"Name: {i['metric_name']}")
    print(f"Result:")
    for key, value in i['result'].items():
        print(f"{key}: {value}")
    print(f"{'*'*100}\n")

Last updated 8 months ago

Was this helpful?