LogoLogo
Slack CommunityCatalyst Login
  • Welcome
  • RagaAI Catalyst
    • User Quickstart
    • Concepts
      • Configure Your API Keys
      • Supported LLMs
        • OpenAI
        • Gemini
        • Azure
        • AWS Bedrock
        • ANTHROPIC
      • Catalyst Access/Secret Keys
      • Enable Custom Gateway
      • Uploading Data
        • Create new project
        • RAG Datset
        • Chat Dataset
          • Prompt Format
        • Logging traces (LlamaIndex, Langchain)
        • Trace Masking Functions
        • Trace Level Metadata
        • Correlating Traces with External IDs
        • Add Dataset
      • Running RagaAI Evals
        • Executing Evaluations
        • Compare Datasets
      • Analysis
      • Embeddings
    • RagaAI Metric Library
      • RAG Metrics
        • Hallucination
        • Faithfulness
        • Response Correctness
        • Response Completeness
        • False Refusal
        • Context Relevancy
        • Context Precision
        • Context Recall
        • PII Detection
        • Toxicity
      • Chat Metrics
        • Agent Quality
        • Instruction Adherence
        • User Chat Quality
      • Text-to-SQL
        • SQL Response Correctness
        • SQL Prompt Ambiguity
        • SQL Context Ambiguity
        • SQL Context Sufficiency
        • SQL Prompt Injection
      • Text Summarization
        • Summary Consistency
        • Summary Relevance
        • Summary Fluency
        • Summary Coherence
        • SummaC
        • QAG Score
        • ROUGE
        • BLEU
        • METEOR
        • BERTScore
      • Information Extraction
        • MINEA
        • Subjective Question Correction
        • Precision@K
        • Chunk Relevance
        • Entity Co-occurrence
        • Fact Entropy
      • Code Generation
        • Functional Correctness
        • ChrF
        • Ruby
        • CodeBLEU
        • Robust Pass@k
        • Robust Drop@k
        • Pass-Ratio@n
      • Marketing Content Evaluation
        • Engagement Score
        • Misattribution
        • Readability
        • Topic Coverage
        • Fabrication
      • Learning Management System
        • Topic Coverage
        • Topic Redundancy
        • Question Redundancy
        • Answer Correctness
        • Source Citability
        • Difficulty Level
      • Additional Metrics
        • Guardrails
          • Anonymize
          • Deanonymize
          • Ban Competitors
          • Ban Substrings
          • Ban Topics
          • Code
          • Invisible Text
          • Language
          • Secret
          • Sentiment
          • Factual Consistency
          • Language Same
          • No Refusal
          • Reading Time
          • Sensitive
          • URL Reachability
          • JSON Verify
        • Vulnerability Scanner
          • Bullying
          • Deadnaming
          • SexualContent
          • Sexualisation
          • SlurUsage
          • Profanity
          • QuackMedicine
          • DAN 11
          • DAN 10
          • DAN 9
          • DAN 8
          • DAN 7
          • DAN 6_2
          • DAN 6_0
          • DUDE
          • STAN
          • DAN_JailBreak
          • AntiDAN
          • ChatGPT_Developer_Mode_v2
          • ChatGPT_Developer_Mode_RANTI
          • ChatGPT_Image_Markdown
          • Ablation_Dan_11_0
          • Anthropomorphisation
      • Guardrails
        • Competitor Check
        • Gibberish Check
        • PII
        • Regex Check
        • Response Evaluator
        • Toxicity
        • Unusual Prompt
        • Ban List
        • Detect Drug
        • Detect Redundancy
        • Detect Secrets
        • Financial Tone Check
        • Has Url
        • HTML Sanitisation
        • Live URL
        • Logic Check
        • Politeness Check
        • Profanity Check
        • Quote Price
        • Restrict Topics
        • SQL Predicates Guard
        • Valid CSV
        • Valid JSON
        • Valid Python
        • Valid Range
        • Valid SQL
        • Valid URL
        • Cosine Similarity
        • Honesty Detection
        • Toxicity Hate Speech
    • Prompt Playground
      • Concepts
      • Single-Prompt Playground
      • Multiple Prompt Playground
      • Run Evaluations
      • Using Prompt Slugs with Python SDK
      • Create with AI using Prompt Wizard
      • Prompt Diff View
    • Synthetic Data Generation
    • Gateway
      • Quickstart
    • Guardrails
      • Quickstart
      • Python SDK
    • RagaAI Whitepapers
      • RagaAI RLEF (RAG LLM Evaluation Framework)
    • Agentic Testing
      • Quickstart
      • Concepts
        • Tracing
          • Langgraph (Agentic Tracing)
          • RagaAI Catalyst Tracing Guide for Azure OpenAI Users
        • Dynamic Tracing
        • Application Workflow
      • Create New Dataset
      • Metrics
        • Hallucination
        • Toxicity
        • Honesty
        • Cosine Similarity
      • Compare Traces
      • Compare Experiments
      • Add metrics locally
    • Custom Metric
    • Auto Prompt Optimization
    • Human Feedback & Annotations
      • Thumbs Up/Down
      • Add Metric Corrections
      • Corrections as Few-Shot Examples
      • Tagging
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
      • Evaluation Deployment Guide
        • Evaluation Maintenance Guide
    • Fine Tuning (OpenAI)
    • Integration
    • SDK Release Notes
      • ragaai-catalyst 2.1.7
  • RagaAI Prism
    • Quickstart
    • Sandbox Guide
      • Object Detection
      • LLM Summarization
      • Semantic Segmentation
      • Tabular Data
      • Super Resolution
      • OCR
      • Image Classification
      • Event Detection
    • Test Inventory
      • Object Detection
        • Failure Mode Analysis
        • Model Comparison Test
        • Drift Detection
        • Outlier Detection
        • Data Leakage Test
        • Labelling Quality Test
        • Scenario Imbalance
        • Class Imbalance
        • Active Learning
        • Image Property Drift Detection
      • Large Language Model (LLM)
        • Failure Mode Analysis
      • Semantic Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Active Learning
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Data Leakage Test
        • Outlier Detection
        • Label Drift
        • Semantic Similarity
        • Near Duplicates Detection
        • Cluster Imbalance Test
        • Image Property Drift Detection
        • Spatio-Temporal Drift Detection
        • Spatio-Temporal Failure Mode Analysis
      • Tabular Data
        • Failure Mode Analysis
      • Instance Segmentation
        • Failure Mode Analysis
        • Labelling Quality Test
        • Drift Detection
        • Class Imbalance
        • Scenario Imbalance
        • Label Drift
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Near Duplicates Detection
      • Super Resolution
        • Semantic Similarity
        • Active Learning
        • Near Duplicates Detection
        • Outlier Detection
      • OCR
        • Missing Value Test
        • Outlier Detection
      • Image Classification
        • Failure Mode Analysis
        • Labelling Quality Test
        • Class Imbalance
        • Drift Detection
        • Near Duplicates Test
        • Data Leakage Test
        • Outlier Detection
        • Active Learning
        • Image Property Drift Detection
      • Event Detection
        • Failure Mode Analysis
        • A/B Test
    • Metric Glossary
    • Upload custom model
    • Event Detection
      • Upload Model
      • Generate Inference
      • Run tests
    • On-Premise Deployment
      • Enterprise Deployment Guide for AWS
      • Enterprise Deployment Guide for Azure
  • Support
Powered by GitBook
On this page
  • Via UI:
  • Via SDK:

Was this helpful?

  1. RagaAI Catalyst
  2. Concepts
  3. Running RagaAI Evals

Executing Evaluations

Run various cutting edge evaluation metrics out-of-the-box with a few simple steps

Last updated 7 months ago

Was this helpful?

Via UI:

1. Adding an Evaluation

  • Navigate to your dataset and click the "Evaluate" button to begin configuring your evaluation.

2. Selecting a Metric

  • Choose the metric you want to run on the dataset from the available options.

3. Naming the Metric

  • Enter a unique metric name to identify this evaluation. This will help you track the column name .

4. Configure the parameters

  • In case you have configured your own gateway, you should see a "custom_gateway" option in the model selection dropdown, which can be selected and used.

  • Map the selected metric to the appropriate column names in your dataset.

    • Ensure that each metric is correctly aligned with the corresponding data columns to ensure accurate evaluation.

5. Threshold

  • User can configure the passing criteria for each metric to define the passed and failed datapoints. Users can re-configure the threshold once they have been calculated from the UI using the ⚙️ icon beside the metric column name.

  • Click on "Update Threshold" to update.

6. Applying Filters (Optional)

  • Optionally, you can apply filters to narrow down the data points for the evaluation.

    • This is useful if you want to evaluate a specific subset of your dataset.

7. Saving the Configuration

  • Once the metric, model, and filters are configured, click "Save" to save your evaluation setup.

8. Configuring Multiple Evaluations

  • Repeat the steps above to configure multiple evaluations if needed. This allows you to run several evaluations on the dataset simultaneously.

9. Running the Evaluations

  • Once all evaluations are set up, click "Evaluate" to execute the evaluations for all the configured metrics.

Via SDK:

You can also run metrics using the following commands:

from ragaai_catalyst import Evaluation
evaluation = Evaluation(project_name="your-project-name",
                        dataset_name="your-dataset-name")

evaluation.list_metrics() #List available metrics

#Define schema mapping for all metrics to be run
schema_mapping={
    'Query': 'prompt',
    'Response': 'response',
    'Context': 'context',
    'ExpectedResponse': 'expected_response'
}

#List metrics to be run
metrics = [
    {"name": "Hallucination", "config": {"model": "gemini-1.5", "provider": "gemini"}, "column_name": "Hallucination_v1", "schema_mapping": schema_mapping},
    {"name": "Response Correctness", "config": {"model": "gpt-4o-mini", "provider": "openai"}, "column_name": "Response_Correctness_v1", "schema_mapping": schema_mapping},
    {"name": "Toxicity", "config": {"model": "gpt-4o-mini", "provider": "openai"}, "column_name": "Toxicity_v1", "schema_mapping": schema_mapping}
    ]
    
#Trigger listed metrics to run
evaluation.add_metrics(metrics=metrics)

The schema mapping above follows a format similar to "key":"value" representations, with "key" representing the column names in your dataset, and "value" representing a Catalyst Schema definition variable (pre-defined). Here is a list of all supported schema variables (case-sensitive):

  • prompt

  • context

  • response

  • expected_response

  • expected_context

  • traceId

  • timestamp

  • metadata

  • pipeline

  • cost

  • feedBack

  • latency

  • system_prompt

  • traceUri

In case you have enabled a custom gateway, the above metric evaluation configuration will be edited for your model's details as follows:

{"name": "Hallucination", "config": {"model": "your-model-name", "provider": "your-model-provider"}, "column_name": "Hallucination_v1", "schema_mapping": schema_mapping}

Once evaluations have been triggered, they can be tracked and accessed as follows:

#Get status
evaluation.get_status()

#View Results
df = evaluation.get_results()
df.head()

Choose the model you want to use for running the evaluation. You can select from pre-configured models within the platform or use a custom gateway (described ) to perform the evaluations.

here
Evaluation